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which one set x = ∞ after the
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1. It is certainly already well-known that the integral of the formula in the
case n = 1 contains partially logarithms and partially circular arcs and the
logarithmic parts constitute this progression
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where i denotes an odd number not greater than k. Hence, if k was an even
number, it will be i = k− 1; and if k was an odd number, this progression
must be continued to i = k, but its coefficients must be taken half as small
or instead of − 2

k one has to write − 1
k , the reason for which irregularity was

explained in Calculi Integralis.

2. Since these parts vanish for x = 0, let us immediately put x = ∞, and
since in general

√
1− 2x cos ω + xx = x− cos ω,

it will be

log
√

1− 2x cos ω + xx = log(x− cos ω) = log x− cos ω

x
= log x

because of cos ω
x = 0; therefore, all these logarithms are reduced to the same

form log x, which is to be multiplied by this series

−2
k

cos
mπ

k
− 2

k
cos

3mπ

k
− 2

k
cos

5mπ

k
− · · · − 2

k
cos

imπ

k
,

where, as we said, i denotes the largest odd number not greater than k, just
with that restriction that, if k was an odd number and hence i = k, the last
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term must reduced by its half. Therefore, if we want to investigate the sum of
this progression, two cases must be considered, the one, in which k is an even
number and i = k− 1, the other, in which k is odd and i = k.

EXPANSION OF THE FIRST CASE IN WHICH k IS AN EVEN NUMBER AND
i = k− 1

3. Therefore, in this case having put x = ∞ the formula− 2
k log x is multiplied

by this series
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whose sum we want to set = S. Let us multiply this series by sin mπ
k , and
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after this reduction we will have
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where obviously all terms except for the last cancel so that

S sin
mπ

k
=

1
2

sin mπ.

But now, since our coefficients m and k are supposed to be integers, it will
obviously be sin mπ = 0 and hence S = 0, unless it also was sin mπ

k = 0,
which case can not occur, since in the integration of the propounded formula
xm−1dx
(1+xk)n one must always assume m < k. Therefore, this way we have shown
that in this case, in which one sets x = ∞ after the integration, all logarithmic
parts of the integral cancel.
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EXPANSION OF THE OTHER CASE IN WHICH k IS AN ODD NUMBER AND
i = k

4. Therefore, in this case, having taken x = ∞, the formula log x is multiplied
by this series
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where the penultimate term is 2
k cos (k−2)πm

k , but for the last term it will be
cos mπ = ±1 while the upper sign holds, if m is an even number, but the
lower sign, if m is odd; hence having removed the last term, for the remaining
terms let us set
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where again all terms except for the last cancel each other, so that hence it
results
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where it should be noted that sin mπ = 0 because of the integer number m;
therefore, we will have
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as a logical consequence the multiplicator of log x will be

=
1
k

cos mπ − 1
k

cos mπ = 0

and so it is manifest, no matter whether k is an even or odd number, that all
logarithmic terms in our integral cancel each other, if we set x = ∞ after the
integration, as we always assume here.

5. Now let us consider also the parts depending on the circle the integral
of our formula is composed of. But these parts are seen to constitute the
following progression:
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where in our last term either i = k− 1 or i = k; the first of course holds, if i is
an even number, the second, if an odd number.

6. But since all these terms vanish for x = 0, let us for our purposes set
x = ∞. Therefore, in general it will be
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k
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from which this arc is = (k−i)π
k . Therefore, hence successively writing the

numbers 1, 3, 5, 7 etc. for i these parts of our integral in question will be
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where in the case, in which k is an even number, one has to proceed to
i = k− 1, and if k is an odd number, to i = k.

7. For the sake of brevity let us set
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so that the integral in question is 2πS
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other. Now let us multiply both sides by 2 sin mπ
k , and since in general
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where, having removed the first and last term, the intermediate terms consti-
tute a regular series, for the investigation of whose value we want to put
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But here it is again convenient to consider two cases, depending on whether k
was even or odd.

EXPANSION OF THE FIRST CASE IN WHICH k IS AN EVEN NUMBER AND
i = k− 1

8. Therefore, in this case we will have
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where sin mπ = 0, whence it will be

2T = −1− cos mπ.
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9. Having found the value for T one concludes that it will be
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k
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k
2 sin mπ

k
.

Finally, the value of our integral formulas we are after will be 2πS
kk and now it

is manifest that the integral of our formula in the case in which S is an even
number, will be π

k sin mπ
k

, if one sets x = ∞ after the integration, of course.

EXPANSION OF THE OTHER CASE IN WHICH k IS AN ODD NUMBER AND
i = k

10. Therefore, in this case
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hence, since the value in question of the integral is 2πS
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integral will be = π
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k
, precisely as in the preceding case. Therefore, hence

we deduce the following
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THEOREM

11. If this differential formula

xm−1dx
1 + xk

is integrated in such a way that, having put x = 0, the integral vanishes, but then
one sets x = ∞, the value resulting from this will always be

π

k sin mπ
k

,

no matter whether k is an even or and odd number.

The proof of this theorem is obvious from the preceding.

12. In the expansion of this formula we assumed that m < k, since otherwise
the logarithmic terms would not have cancelled each other; but not even
this restriction is necessary any longer. For, in the case m = k the integral of
the formula xm−1dx

1+xk is 1
k log

(
1 + xk), which for x = ∞ also is x = ∞; but the

theorem indicates that our integral is π
k sin π = ∞. Therefore, as long as m was

not greater than k, our formula is always true.

13. Yes, it is not even necessary that the exponents m and k are integer
numbers, as long as it was m > k; for, if it was m = µ

λ and k = κ
λ , the value

will be λπ
κ sin µπ

κ
, the truth of which is shown this way. Since in that case one has

to integrate this formula

∫ x
µ
λ

1 + x
κ
λ
· dx

x
,

set x = yλ; it will be dx
x = λdy

y and the formula will become

∫ yµ

1 + yκ
· λdy

y
= λ

∫ yµ−1dy
1 + yκ

,

whose value will obviously be λπ
κ sin µπ

κ
.
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ANOTHER PROOF OF THIS THEOREM

14. Let P denote the value of the integral
∫ xm

1+xk · dx
x from the limit x = 0

to x = 1, but Q the value of the same integral from x = 1 to x = ∞, so that
P + Q yields the value contained in the theorem. Now, to find the value Q set
x = 1

y , whence dx
x = − dy

y , and it will be

Q =
∫ y−m

1 + y−k ·
−dy

y
= −

∫ yk−m

1 + yk ·
dy
y

from y = 1 to y = 0. Therefore, hence having commuted the limits, it will be

Q = +
∫ yk−m

1 + yk
dy
y

from the limit y = 0 to y = 1. Now since, having calculated this integral, the
letter y goes out of the calculation, we can write x instead of y so that

Q =
∫ xk−m

1 + xk ·
dx
x

,

having done which we will have

P + Q =
∫ xm + xk−m

1 + xk · dx
x

from the limit x = 0 to x = 1. But not so long ago I demonstrated that the
value of this integral extended from x = 0 to x = 1 is = π

k sin mπ
k

. Therefore,
hence the following not less remarkable theorem results.

THEOREM

15. The value of this integral formula

∫ xm + xk−m

1 + xk · dx
x

extended from x = 0 to x = 1 is equal to the value of this integral∫ xm

1 + xk ·
dx
x

extended from the x = 0 to ∞.
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16. Having discussed these things let us now go over to the integral formula
propounded in the title, and to reduce it to the form treated up to now, recall
the following reduction

∫ xm−1dx
(1 + xk)λ+1 =

Axm

(1 + xk)λ
+ B

∫ xm−1dx
(1 + xk)λ

,

whence after differentiation the following equation results

xm−1dx
(1 + xk)λ+1 =

mAxm−1dx
(1 + xk)λ

− λkAxm+k−1dx
(1 + xk)λ+1 +

Bxm−1dx
(1 + xk)λ

,

which equation, divided by xm−1dx and multiplied (1 + xk)λ, by bringing the
negative term from the left-hand side to the right-hand side will be

1 + λkAxk

1 + xk = mA + B,

which equation can manifestly only hold, if λkA = 1 or A = 1
λk , whence it

will be 1 = mA + B = m
λk + B, and so it will be B = 1− m

λk .

17. Having found these values for the letters A and B we first assumed that
the integrals are taken in such a way that they vanish for x = 0; then having
put x = ∞, since the exponent n is supposed to be smaller than k, the absolute
term containing the letter A vanishes, so that in this case x = ∞

∫ xm−1dx
(1 + xk)λ+1 =

(
1− m

λk

) ∫ xm−1dx
(1 + xk)λ

.

If we now take λ = 1 first, since before we found that for the same case x = ∞

∫ xm−1dx
1 + xk =

π

k sin mπ
k

,

we will have the value of this integral

∫ xm−1dx
(1 + xk)2 =

(
1− m

k

) π

k sin mπ
k

,

if the integral is also extended from x = 0 to x = ∞.
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18. If we now in like manner put λ = 2, for the same limits of integration
one will find

∫ xm−1dx
(1 + xk)3 =

(
1− m

k

) (
1− m

2k

) π

k sin mπ
k

;

if in the same way continuously larger values are attributed to the letter λ,
one will find the following remarkable forms of the integrals

∫ xm−1dx
(1 + xk)4 =

(
1− m

k

) (
1− m

2k

) (
1− m

3k

) π

k sin mπ
k

,

∫ xm−1dx
(1 + xk)5 =

(
1− m

k

) (
1− m

2k

) (
1− m

3k

) (
1− m

4k

) π

k sin mπ
k

,

∫ xm−1dx
(1 + xk)6 =

(
1− m

k

) (
1− m

2k

) (
1− m

3k

) (
1− m

4k

) (
1− m

5k

) π

k sin mπ
k

,

etc.

19. Hence, if the letter n denotes an arbitrary integer for the formula in the
title, if its integral is extended from x = 0 to x = ∞, its value reads as follows:

(
1− m

k

) (
1− m

2k

) (
1− m

3k

) (
1− m

4k

)
· · ·
(

1− m
(n− 1)k

)
π

k sin mπ
k

,

which is therefore equal to this integral formula

∫ xm−1dx
(1 + xk)n .

20. Here it is certainly only possible to take integer numbers for n; but by the
method of interpolation on the other hand, which was explained at various
places in more detail, it is possible to extend this integration also to cases,
in which the exponent n is a fractional number. For, if the following integral
formulas are extended from y = 0 to y = 1, in general the value of our
propounded formula can be represented this way
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∫ xm−1dx
(1 + xk)n =

π

k sin mπ
k
·
∫

ynk−m−1dy(1− yk)
m
k −1∫

yk−m−1dy(1− yk)
m
k −1 .

Hence, if m = 1 and k = 2, it follows that

∫ dx
(1 + xx)n =

π

2

∫ y2(n−1)dy√
1− yy

:
∫ dy√

1− yy
=
∫ y2(n−1)dy√

1− yy
.

So, if n = 3
2 , it will be ∫ dx

(1 + xx)
3
2
=
∫ ydy√

1− yy
,

whose validity is immediately clear, since the first indefinite integral is x√
1+xx

,

the second = 1−
√

1− yy, which for x = ∞ and y = 1 are obviously equal.
Furthermore, for this general integration it will be helpful to have noted that
the exponent can not be taken smaller than 1, since otherwise the values of
both integrals would become infinite.
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